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Abstract

We set out to fabricate a microcavity in-house, using a method devised

by another group, for the first time in our lab. In particular, we wished to

investigate for ourselves how well the method could potentially work for

us and also discover any problems with it. Using this method, an optical

microcavity was fabricated in-house and characterized. The half-symmetric

cavity, of length 135µm and radius of curvature 175µm, displayed a finesse

of 800. Some problems with this method were discovered, but the method

still holds promise. This project serves as the preliminary trial run for the

making of microcavities using this method in our lab.
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Chapter 1

Introduction

This project is about making and characterizing a microcavity. The typi-

cal use of microcavities is to satisfy the requirements of the strong coupling

regime in cavity quantum electrodynamics, in which individual quanta play

a significant role [1] and the coherent, reversible evolution of an atom-cavity

system become observable. This strong coupling regime is of experimental

interest for various reasons. Firstly, it allows for fundamental investigations

into quantum position measurement [1]. For example, strong coupling fa-

cilitates quantum position measurements of atomic CM (center of mass) in

real-time, which in turn allows one to investigate the standard quantum

limit (SQL) of measuring atomic position [2], [3], [4], [5]. Secondly, and with

a more application-based perspective, strongly coupled atom-cavity systems

are potential building-blocks in quantum information processing applications.

Much work has already been done in this direction. Atom chip devices com-

prising atom traps and microcavities microfabricated on a chip which allow

for single atom detection with high bandwidth have been made by various
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groups [6], [7], [8]. Such atom chips are potentially useful as quantum logic

gates, which are needed for the construction of a quantum computer [9]. Cav-

ities interacting with atoms in the strong coupling regime may also be used

for the purpose of entanglement distribution in a quantum network . Entan-

glement distribution using cavities has been demonstrated experimentally

by various groups [10], [11]. These cavities are also useful for single photon

sources [12], which serve as flying qubits for distribution of entanglement

over large distances. Cavities have also been used for cooling ( [13], [14])

and trapping ( [4], [15]) of atoms. All these applications with cavities require

the successful trapping and localization of atoms. This may be done only

if cavities with the right qualities of high finesse and small modal volume

are available. This project is about laying the practical groundwork for the

fabrication of such a cavity. In particular, we attempt to explore use of an

existing method of creating microcavities of small modal volume and, given

the appropriate coatings, extremely high finesse. To this end, we will make a

microcavity using medium-grade coatings which will be appropriate for the

purpose of characterizing the cavity.

The outline for this thesis is as follows. Chapter 2 outlines the background

physics needed to understand this project. Chapter 3 covers the methods

used to fabricate the cavity as well as other related information. Chapter

4 reports on the measurements made to characterize the cavity. Chapter

5 concludes the thesis by discussing the results of the measurements and

further work which may be done beyond the completion of this project.
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Chapter 2

Optical Cavities and Cavity

Quantum Electrodynamics

Before going into the details of the project, a brief review of the physics

involved in this project is given in this chapter.

2.1 Cavity Basics

Optical cavities, consisting of two mirrors placed a certain distance apart,

undergo resonance when light of the correct wavelength (or frequency) and

geometry is passed through it. In this section, a review of the physics of

optical resonance is given. This is followed by an explanation of the concept

of mode-matching and the existence of different modes within a cavity.
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2.1.1 Resonance of Cavities

The following review is adapted from [16]. For simplicity, we consider here an

optical cavity consisting of two plane-parallel mirrors and an incident plane

wave. Although the actual experiment involves using a cavity consisting of

one planar and one concave mirror (a half-symmetric cavity) and an incident

Gaussian TEM0,0 beam, the concepts described here are mostly applicable to

the actual experiment. The few modifications which are necessary are given

in the next subsection.

The two mirrors M1 and M2 in the optical cavity of Fig. (2.1) have reflectiv-

ities of r1 and r2, transmitivitties t1 and t2 and losses a1 and a2 respectively.

These quantities represent the fraction of the electric field amplitude which

is reflected, transmitted or lost respectively when an electric field impinges

upon M1(2). The losses here include both losses through absorption and

scattering .

Since the energy in any electric field is proportional to the square of its

amplitude, conservation of energy requires that

R1(2) + T1(2) + A1(2) = 1 (2.1)

where the uppercase letters have been used to represent the modulus-squares

of their corresponding lowercase ones, and are respectively called the reflec-

tion, transmission and loss coefficients. They refer to the fraction of the

energy which is reflected,transmitted or lost.
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Figure 2.1: An optical cavity consisting of two plane mirrors. This image

is adapted from [16].

When the laser first enters the cavity of length Lcav, an initial electric field

of amplitude E0 appears just to the right of M1. This wave travels to mirror

M2 and gets reflected to produce a wave travelling towards the left with an

electric field given by r2E0e
−ikd. This wave is then reflected again at M1 to

produce a wave just to the right of M1 travelling to the right, described by

r1r2E0e
−i2kd. At this location, there is also a new incident field E0 introduced

into the cavity by the laser, which is exactly one round-trip behind. This

process of fields bouncing back and forth while being joined by new ones

clearly can go on for any number of times as long as the laser remains switched

on. Hence, the total field propagating to the right at the location just to the

right of M1, is simply the sum of these waves, which may be written as an

infinite geometric progression as follows.
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E+
T =

∞∑
0

E+
n = E0

[
1 + r1r2e

−ik2d +
(
r1r2e

−ik2d
)2

+ etc
]

=
E0

1− r1r2e−i2θ

(2.2)

where θ = kLcav, is the electrical length of the cavity, which is the phase

picked up by the field in travelling the length of the cavity. k simply denotes

2π
λ

.

The total field travelling toward the left just to the right of M1 is r2e
−2iθ of

E+
T . Hence,

E−T =
∑

E−n = r2e
−2iθ · E+

T = E0

[
r2e
−2iθ

1− r1r2e−2iθ

]
(2.3)

We wish to find the relationship between the incident field entering the cavity,

Ei, and the reflected and transmitted fields, Er and Etr, respectively. We

do this by noting that E+
T and E−T are related via the following equation,

which is simply the intuitive statement that the total field travelling toward

the right is the sum of the fields transmitted and reflected by M1. (the field

picks up a phase factor of i when it gets transmitted.)

E+
T = it1Ei + r1

∑
E−T (2.4)

The above result can be combined with the previous two equations to yield

the relation between E0 and Ei as follows.

E0 = it1Ei (2.5)
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The field reflected from the cavity is the sum of the portion of the incident

field that gets reflected by M1 and the total field travelling to the left within

the cavity that gets transmitted through M1.

Er = r1Ei + it1
∑

E−n (2.6)

Substitution for E0 and
∑
E−n in the above equation using equations (2.5)

and (2.3) respectively and some simple algebraic manipulation obtains the

ratio of the fields reflected from and incident upon the cavity. We are inter-

ested in the fraction, T , of the incident power which gets transmitted through

the cavity, so we take the modulus-squared of this quantity to obtain

T =
(1−R1 − A1) (1−R2 − A2)(
1−
√
R1R2

)2
+ 4
√
R1R2sin2θ

(2.7)

where equation (2.1) has been used to write T only in terms of reflectivities

and losses.

One may also obtain the ratio of the fields transmitted through and inci-

dent upon the cavity by noting that the field transmitted is simply given

by it2e
−iθ∑E+

n . Again, we are interested in the fraction, R of the incident

power reflected from the cavity, so we take the modulus square of this to

obtain

7



R =
R1 +R2 (1− A1)2 − 2

√
R1R2 (1− A1) + 4

√
R1R2 (1− A1) sin2θ(

1−
√
R1R2

)2
+ 4
√
R1R2sin2θ

(2.8)

Equations (2.7) and (2.8) are very important. They will be needed later

for making sense of the experimental measurements of the reflection and

transmission of the cavity. Note that when both mirrors have equal reflection

coefficients, and zero loss coefficients, and θ is an integer multiple of π, the

transmission is unity and the reflection is zero. This situation, in which θ is an

integer multiple of π so that the cavity transmission reaches its maximum is

known as resonance. M2 is typically highly reflective, yet we have an amount

of power equal to the incident power exiting through it. This observation

tells us that the intracavity field during resonance is many times that of the

input field. This is an essential feature of resonance. It is responsible for the

increased interaction between photons and atoms in a cavity. This will be

discussed in the next section.

It can be easily shown by substitution that as the reflection coefficients of

the mirrors become more different, T decreases while R increases during

resonance. Hence, mismatch of the reflection coefficients reduces our ability

to couple light into the cavity. When θ is approximately π
2
, the transmission

is essentially zero and the reflection is unity. This situation is known as

anti-resonance.

We now analyze the phenomenon of resonance in more detail. As mentioned,

resonance occurs when the following condition is fulfilled:
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θ = kLcav = qπ (2.9)

where q is any integer number.

Writing Eq. (2.9) in terms of wavelength, frequency and angular frequency,

we obtain respectively

Lcav =
mλ

2
(2.10)

νm =
c

2nLcav
(2.11)

ωm = m
πc

nLcav
(2.12)

where m is some integer number and ωm(νm) refers to the corresponding

resonant angular frequency(frequency) of the cavity. n simply refers to the

refractive index of the medium of the cavity. For our purposes, this was

simply free space so we may treat n as unity in our calculations.

A look at Eq. (2.2) shows that Eq. (2.9) simply describes the situation

when all the fields in the summation of Eq. (2.2) are in phase, which means

that all the fields exiting the cavity through M2 will interfere constructively

regardless of how many round trips each one has made before exiting. Also, it

may be seen from Eq. (2.6) that when Eq. (2.9) is satisfied, the fields exiting

the cavity through M1 have a phase difference of exactly π with the portion

of the incident field reflected from M1, resulting in destructive interference

between the two. The latter two statements explain why transmission is

maximized and reflection minimized during resonance.
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The full-width half maximum, or linewidth, of the cavity, ∆ν 1
2
, which is

found from Eq. (2.7) through simple algebraic manipulation, is given by

∆ν 1
2

=
c

2nd

1− (R1R2)
1
2

π (R1R2)
1
4

=
∆νFSR
F

(2.13)

where

∆νFSR =
c

2nLcav
(2.14)

is the free spectral range (also known as axial mode spacing) of the cavity,

which is the difference between adjacent resonant frequencies.

and

F =
π (R1R2)

1
4

1− (R1R2)
1
2

=
∆νFSR
∆ν 1

2

(2.15)

is the finesse of the cavity. From the second expression for F , we see that F

is a measure of how sharp the resonance is.

The cavity linewidth determines the decay rate of photons in the cavity. This

may be seen as follows. For the purpose of this illustration, it is assumed that

R1 = R2 ≡ R ' 1, which is usually indeed the case in practice. If at time

t = 0, a pulse of N photons is created at the center of the cavity and travels

towards one of the mirrors, then after time t = nLcav
c

, the photon number

would have decreaseed to RN . Hence, the following differential equation

applies:

dN

dt
= − ∆N

nLcav
c

= −c (1−R)

nLcav
N (2.16)
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Solving this yields N = N0e
− t
τcav , where the photon lifetime τcav is

τcav =
nLcav

c (1−R)
(2.17)

The cavity photon decay rate κ is then defined simply as κ = 1
τcav

. Combining

this expression with Eq.(2.15) and applying the estimation R ' 1 yields

κ = 2π∆ν 1
2

= ∆ω (2.18)

Hence, the linewidth of the cavity ∆ω, is equal to the decay rate of the cavity-

the narrower the cavity’s linewidth, the longer photons can stay confined

within its walls. It is also obvious from Eq. (2.15) that the decay rate of a

cavity is less for a higher finesse cavity. The quality factor, Q, of a cavity

also serves a similar purpose as the finesse, and is defined by

Q =
ν0

∆ν 1
2

(2.19)

where ν0 is the particular resonant frequency of the cavity in question.

In summary, this section has introduced the important characteristics of

cavity resonance. The transmission and reflection of the cavity are quantified

by equations (2.7) and (2.8). The quality of the cavity is quantified by the

linewidth, and hence the finesse and Q factor.
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2.1.2 Gaussian Modes and Mode-Matching

The previous scenario assumed a planar cavity with an incident plane wave.

In practice, Gaussian modes are usually used, with either one or both cavity

mirrors being curved. In this case, resonance requires not only that we get

the cavity length right, but also that we match the geometry of the laser

beam with that of the cavity mirrors. This practical matter is known as

mode-matching of a beam to the cavity.

It is sufficient for our purposes to consider only transverse electromagnetic

(TEM) modes. These are one class of solutions to the Maxwell equations in

free space and they essentially tell us the shape of our lasers. The general

electric fields for TEMm,p modes are given by

E (x, y, z)

Em,p
= Hm

[
2

1
2x

w (z)

]
Hp

[
2

1
2y

w (z)

]

×w0

wz
exp

[
−x

2 + y2

w2 (z)

]

×exp

{
− i
[
kz − (1 +m+ p) tan−1

(
z

z0

)]}

×exp

[
−i kr2

2R (z)

]
(2.20)

where H refer to Hermite polynomials, and
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w2(z) = w2
0

[
1 +

(
z

z0

)2
]

(2.21)

R(z) = z

[
1 +

(z0

z

)2
]

(2.22)

z0 =
πw2

0

λ0

(2.23)

w(z) is the spot size of the beam. w0 is the minimum value of the spot size

and is referred to as the beam waist. It may be seen here that the position

of the beam waist defines the origin z = 0. R(z) is the radius of curvature

of the beam. For a TEM0,0 mode, these quantities are easily visualized in

Fig.(2.2). z0 is the Rayleigh length of the beam.

Figure 2.2: Propagation of a TEM0,0 mode through a half-symmetric

cavity.The curved dotted lines represent the wavefronts of the beam. In order for

resonance to occur, the radius of curvature of the beam at the mirrors must match

that of the mirrors.Diagram is adapted from [16].
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In order for a beam to resonate within the half-symmetric cavity used for this

project, the wavefronts of the beam at the mirrors must match the mirror

surfaces, just as the wavefronts of the plane wave matched the flat mirror

surfaces in the previous section. The TEM0,0 beam changes its radius of

curvature as it propagates through space, as seen from Eq. (2.22). The

modes are matched if the beam reaches the mirror with a radius of curvature

equal to that of the mirror. In the case of our half-symmetric cavity, this

means that the radius of curvature must be infinite at the plane mirror. From

Eq.(2.21), this is equivalent to saying that the beam waist must occur at the

plane mirror. From Eqs.(2.22) and (2.23), it may be seen that in order for

the beam curvature to match that of the curved mirror for a given cavity

length, the correct size of beam waist w0 must be used. Usually, and as is

the case in this project, a lens is placed at an appropriate distance before

the cavity. A collimated beam is then passed through the lens so that the

correct size beam waist occurs at the planar mirror. In order to know which

focal length of lens is appropriate, we make use of the following formula

wout =
λf

πwin
(2.24)

This formula, together with Eqs. (2.22),(2.21) and (2.23), are used for mode-

matching. The TEM0,0 mode described above has just the right geometry to

resonate in the half-symmetric cavity. It is thus referred to as the privileged

mode of the cavity. Misalignments of the beam can cause other unwanted

modes to start resonating. This issue will be discussed in the next chapter.

In this project, we deal with curvatures on the order of 100−200µm. Hence,
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we need very small values for the beam waist, on the order of several microns.

Such small waists cannot be measured straightforwardly using the typical

commercial beam profilers on the market. It is necessary to use a high-

resolution imaging system followed by a curve-fit to the pixel data in Matlab

in order to measure the beam waist. This is discussed in detail in Chapter 4.

2.1.3 Axial and Transverse Mode Spacing

Just as Eq. (2.11) tells us the resonant frequencies of the planar cavity with

plane waves, it is possible to obtain a formula for the resonant frequencies of

the Gaussian modes in our half-symmetric cavity.

The phase shift experienced by a TEMm,p mode in propagating from z = 0

to z = d is given by

φ(0→ d) = kd− (1 +m+ p) tan−1

(
d

z0

)
(2.25)

Resonance occurs when φ = qπ, for the same reasons mentioned previously.

For the half-symmetric cavity of length d in Fig. (2.2), Eq. (2.22) provides

a relation between z0 and R2:

z0 = (dR2)
1
2

(
1− d

R2

) 1
2

(2.26)

Substituting this into φ = qπ yields an expression for the resonant frequencies

of the Gaussian modes in the cavity:
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νm,p,q =
c

2nd

[
q +

1 +m+ p

π
cos−1

(
1− d

R2

) 1
2

]
(2.27)

Modes for which m = p = 0 are known as axial modes. We can see from this

equation that the the axial mode spacing, which is the difference between

modes of adjacent q values and m = p = 0, is equivalent to the free spectral

range given in Eq.(2.14). Modes which do not have zero values for m and p

are referred to as transverse modes. From Eq. (2.27), it may be seen that

for a particular q value, adjacent modes are separated in frequency space by

the transverse mode spacing, defined by

1

π
cos−1

(
1− d

R2

) 1
2

(2.28)

This raises the practical issue of mode degeneracy within a cavity. It is clear

from the above equation that modes of different m and p will overlap in

frequency space.

Another issue is that the cavity can resonate in modes other than the privi-

leged one when the input beam (of constant frequency) is slightly misaligned.

Our half-symmetric cavity has a geometry which coincides with a particular

axial mode depending on the cavity length, making this mode the privileged

one. However, a misalignment of the beam with respect to the optic axis

of the cavity can result in the cavity resonating in the neighbouring trans-

verse modes in addition to the privileged mode. This is undesirable as it will

eventually result in reduced coupling between an atom and the privileged

mode when the cavity is used for cavity quantum electrodynamics experi-

ments (see next section). Considerable effort is thus required in practice to
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align the beam so that the cavity resonates only in the privileged mode.

2.2 Brief Review of Cavity Quantum Electro-

dynamics

A brief review of the relevant cavity quantum electrodynamics (CQED) is

given here, based on the review paper in [1] and [17]. Fig. 2.3 shows a model

system in which a two state atom is located in an optical cavity consisting

of two spherical mirrors.

Figure 2.3: Diagrammatic representation of atom-photon interaction

within a cavity. As seen from the diagram, the atom can spontaneously emit

a photon sideways, represented by γ, or the photon can pass through the cavity

walls, as represented by κ. The region enclosed by the horizontal lines represents

the cavity mode volume, V0. This diagram is adpated from [17].
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The Hamiltonian for the atom-cavity system is given by

Ĥs =
~ωA

2
σ̂z + ~ωC â†â+ i~

[
g(r)â†σ̂− − g∗(r)âσ̂+

]
(2.29)

The operator â and â† are the annihilation and creation operators for the

single-mode of the resonator under consideration respectively. σz and σ̂± are

the Pauli operators for the atomic inversion, raising, and lowering, respec-

tively. ωA and ωC are the atomic and cavity resonance frequencies. g(r) is

the coherent coupling rate between the atom at position r, which we may

take for our purposes to be given by

g(r) =

(
µ2ωC

2~ε0Vm,n

) 1
2

U(r) (2.30)

≡ g0 U(r)

µ is the transition dipole moment for the two-state atom. Vm,n is the cavity

mode volume, given by

Vm,n =
πw2

0

2
Lcav

(
m!n!2n+m

)
(2.31)

=
πw2

0

2
Lcav (for the TEM0,0mode)

For our purposes, we may make the simplifying approximation in Eq. (2.31)

that g(r) is given by g0. This is because most experiments make use of a

trap, typically a dipole force trap, to restrict the atom’s position in the cavity

to regions where U(r) ' 1.
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There are two loss mechanisms for loss of photons from the cavity. Firstly,

photons may get transmitted through the cavity walls at a rate quantified

by the cavity decay rate κ, as explained in the previous section and defined

in Eq. (2.18). Secondly, photons may be lost through a combination of

other mechanisms, at a rate quantified by the non-resonant decay rate γ.

The loss mechanisms involved in this rate are as follows. Photons may be

radiated in a direction that misses the walls. Alternatively, the atom may

decay to another level other than the ground state in the two-level atom

approximation. Excited atoms may also fall back to the ground state through

scattering to other states and decaying without any photon emission.

Here we may take γ ≡ γ‖
2

, where

γ‖ = A21

(
1− ∆Ω

4π

)
(2.32)

where A21 is the Einstein A coefficient for spontaneous emission and ∆Ω the

solid angle subtended by the cavity mode.

A derivation of the condition for strong coupling is beyond the scope of this

thesis, so the condition shall be simply stated. Strong coupling occurs when

g0 � (γ, κ) (2.33)

which means that the coherent coupling rate must be larger than both the

non-resonant decay rate and cavity decay rate. It is worth noting here that

in order for g0 to be larger than κ, we need a high finesse cavity, as seen from

Eq. (2.15). Also, we require a small mode volume. This is why we require
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microcavities with high finesse in order to achieve strong coupling. Another

note worth making here is that from Eq. (2.32), we need not have a very

small cavity (ie. very small Lcav) if we can compensate for this by using a

very small beam waist w0.

In the regime of strong-coupling, the energy levels of the atom-photon system

undergo splitting. This splitting effect is needed for the various experiments

done in the strong coupling regime. For example, the trapping potential in

cavity trapping occurs due to this energy splitting [15]. Single atom detection

in cavities is also made possible because of the energy splitting- the energy

split leads to a splitting of a single peak into two in the transmission vs.

frequency spectrum when an atom passes through the cavity [18].

The physics behind this energy splitting is essentially described in the Jaynes-

Cummings Model. A simplified review of this model, adapted from that

given in [17], is given here.

We consider a two-level atom of angular frequency ω within a resonant cavity.

The atom-photon states, Ψ in the absence of atom-cavity interaction (ie. in

the absence of strong coupling), are labelled by the state of the atom ψ and

the number of photons in the cavity n, so

Ψ =| ψ;n 〉 (2.34)

The ground state occurs when the atom is in the ground state with no photons

in the cavity: Ψ0 =| g; 0 〉. The ground state is non-degenerate with an energy

of 1
2
~ω due to the zero-point energy of the vacuum field in the cavity. The

excited states are all doubly degenrate. For example, the first excited state
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with energy 3
2
~ω corresponds to two states- | e; 0 〉 and | g; 1 〉, corresponding

to the atom being in the excited state with no photons present and the atom

being in the ground state with a single photon present respectively.

In the presence of strong coupling, the electric-dipole interaction between

the atom and photon mixes the degenerate states and lifts their degeneracy.

Hence, the first excited state becomes a doublet with energies given by

E±1 =

(
3

2

)
~ω ± ~g0 (2.35)

with corresponding wavefunctions

Ψ±1 =
1√
2

(| g; 1 〉∓ | e; 0 〉) (2.36)

The other states are also split similarly so that

E±n =

(
n+

1

2

)
~ω ±

√
n~g0 (2.37)

Ψ±n =
1√
2

(| g;n 〉∓ | e;n− 1 〉)

∆En = 2
√
n~g0

where the last equation is the energy splitting for the nth level. The mixed

atom-photon states are known as dressed states and the ladder of doublets,

which starts from n = 1, is the Jaynes-Cummings ladder. As mentioned

earlir, this energy splitting is responsible for many of the novel effects seen

in the strong coupling regime.
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Chapter 3

Cavity Fabrication Methods

and Considerations

3.1 Considerations for Design of Micro-Cavity

In order to decide on the design of the cavity, we have to consider issues

such as the alignment stability of the cavity as well as the overlapping of the

cavity modes.

3.1.1 Alignment Stability

In order for the cavity to resonate in single-mode, we require that the optic

axis defined by the two mirros pass through or be near the center of each

mirror. In the worst case scenario, misalignment can result in the optic axis

leaving the cavity altogether, resulting in the absence of any resonance.
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Misalignments may take the form of translational or rotational misalign-

ments, in which the mirrors are rotated at some angle with respect to each

other so that the optic axis misses the centers of the mirrors. To obtain a

sense of the magnitude of translational and rotational misalignment which

a micro-cavity can tolerate, we consider two concave mirrors of curvature R

and calculate the amount by which the optic axis deviates from the centers

of the two mirrors for small amounts of translational and rotational misalign-

ment using typical cavity parameters. To facilitate easy calculation, we may

consider these two misalignments one at a time separately.

We consider first the case of translational misalignment, as shown in Fig.

(3.1).

Figure 3.1: Vertical misalignment. Two mirrors which were originally in per-

fect alignment with their centers on the x axis have been displaced vertically. M1

has been displaced upwards by ∆y
2 while M2 has been displaced downwards by an

equal amount.

23



The cavity length is denoted by L. Assuming that the mirrors M1 and

M2 started out with their centers positioned symetrically at
(
±L

2
, 0
)
, with

no tilting between them, the figure shows the mirrors after they have been

respectively displaced by ∆y
2

below and above the x-axis respectively, giving a

net displacement of ∆y between them. The centers of the mirror curvatures

are denoted by crosses. The optic axis is defined as the line joining these

centers of curvature. We wish to find the difference in position between the

center of mirror M2 and the point where the optic axis intersects with M2.

We wish to make sure that this intersection point is still reasonably near the

center of the mirror for small translational misalignments of the mirrors. On

the cartesian axes in Fig. (3.1), the equations for the optic axis and mirror

M2 are given respectively by

y =
∆y

2
(
R− L

2

)x (3.1)

R2 =

(
y +

∆y

2

)2

+

(
x+

(
R− L

2

))2

(3.2)

For a typical misalignment of say ∆y = 10µm (the uncertainty of readings

on our translation stage’s micrometers is 10µm), and typical curvature and

cavity length R = 150µm and L = 137.5µm, we find that the intersection

point between optic axis and mirror M2 occurs at (68.5µm, 4.21µm). The

distance from this intersection to the center of the mirror M2 at (L
2
,−∆y

2
)

is found to be 9.21µm, which is still within acceptable range, as the cross-

sectional diameter of the mirrors, labelled D, (ie. the radius of the circle seen

under the microscope when looking at an exposed bubble) are on the order

of 200− 250µm for mirrors of R = 150µm, since the bubbles are polished to
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slightly beneath the half-way mark. A misalignment of 20µm results in the

optic axis intersecting M2 at a distance of 64 µm from its center. This is still

within the mirror M2, but we see that misalignments of more than 20µm are

a cause for concern. This is not really a problem as achieving a translational

alignment accuracy to within 10µm should not be a problem given the spatial

resolution of translation stages available on the market today.

We consider next the problem of rotational misalignment. Once again as-

suming the mirrors started out with no rotational misalignment and their

centers positioned at
(
±L

2
, 0
)
, we consider the situation where both mirrors

have each been rotated by θ
2
, so that they have a net angular misalignment

of θ radians. This situation is shown in Fig. (3.2).

Figure 3.2: Rotational misalignment. Two mirrors which were originally in

perfect alignment with their centers on the x axis have each been tilted so that

their optic axes form an angle of θ2 with respect to the horizontal axis. This means

that the optic axes form an angle of θ with each other.
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The deviation of the intersection of the optic axis and mirror M2 is taken as

Rθ
2

. This slightly over-estimates the error- if this quantity is an acceptable

value, so too is the actual error. We require the deviation Rθ
2

to be much less

than D
2

, which is half the cross-sectional diameter of the mirror, as defined

in Fig. (3.1). In order for the deviation to be equal to D
2

, we require a total

angular misalignment of θ = 57.3◦. For a more reasonable misalignment

of θ = 1◦, we obtain a deviation of Rθ
2

= 1.5µm, where we have used the

same value for R as before. A misalignment of 1◦ is larger than what we

would expect in the real setup. Hence, we may conclude that rotational

misalignment is not likely to be a major cause for concern. The greater

concern would be the translational misalignment of our mirrors.

In order to make it easier to align the mirrors, we decided upon the half-

symmetric cavity design, in which the cavity consists of one plane mirror

and one curved micro-mirror. This means that we need only worry about

the rotational misalignment of the mirrors, since the plane mirror does not

‘see’ the translational misalignment described previously due to its symmetry

along the planar direction.

3.1.2 Important Cavity Parameters

Here, we make use of the formulae outlined in Chapter 2 to calculate the

expected values of some important cavity parameters.

For an estimated cavity length of 135µm and radius of curvature 175µm, the

free spectral range, given by Eq. (2.14), is 1.11 THz, while the transverse

mode spacing is 0.341 of a free spectral range, or 0.379 THz, as given by Eq.
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(2.28).

The linewidth of the cavity,∆ν 1
2
, is given by Eq.(2.13), where F is the finesse

of the cavity. For the purposes of this project, we did not intend on using

the best mirror coatings on the market, which can give F on the order of

105 or better. This is because these coatings can only be done overseas and

would take possibly several months. This was unacceptably long a time to

wait for a 2 semester project. Moreover, we do not need such high reflection

coefficients for a first iteration of making cavities using this technique- this

project is after all about making these cavities and finding out how well they

work and what issues might be associated with them. Hence, we decided to

go for lower quality coatings which give an expected finesse of about 1000.

These coatings could be done locally and had a turnaround time of one week.

A finesse of 1000 gives us a linewidth of 1.11GHz.

It is useful to calculate these parameters in order to have an idea of the

spacing between modes. When the cavity first begins to resonate during the

alignment process, we typically see many modes in our scope. These figures

above help us to make sense of what we are seeing. For example, they give

us an idea of how many transverse modes we should expect to see between

axial modes.

We now calculate the g factor for such a cavity and see if it fulfills the strong

coupling requirement for a rubidium atom, which is a typical atom used in

such experiments. For 780nm light, the spontaneous decay rate is 4×107s−1.

We may take this as our γ parameter for our purposes. We then make use

of the following formulae from [6], which are more convenient forms of Eqs.

(2.31) and (2.15).
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g =

√
3λ2

π2w2
1

cγ

Lcav
(3.3)

κ ' π

F

c

2Lcav
(3.4)

We assume a typical beam waist of about 3µm, which we can bring about

in the lab using aspheric lenses. We assume a finesse of 1000 as before. We

then obtain g = 1.35× 109s−1, and κ = 3.49× 109s−1. Hence, our cavity was

not expected to fulfill the strong coupling criterion. However, it is important

to note that if we were to use high quality coatings giving F of 105, then

κ = 3.49× 107. This satisfies the strong coupling regime requirement. How

well a cavity satisfies the criterion is quantified by g2

κγ
. For our current cavity,

this works out to 13. For a cavity with F = 105, this works out to 1300.

This means that this cavity design is potentially able to bring us well into

the strong coupling regime.

3.2 Making of Curved Micro-Mirror Substrate

The curved micro-mirror substrate was fabricated based on the procedure

devised by Cui. et. al [19] shown in Fig.(3.3). Borosilicate glass tubes were

melted in a nitrogen atmosphere at 1100K. Gas bubbles are trapped inside

the glass during the melting process. Upon cooling and hardening, these

bubbles are formed inside the solid glass with an expected high degree of

sphericity due to surface tension.
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Figure 3.3: The procedure used for developing bubbles. The glass tubes

are melted and upon cooling capture bubbles. These bubbles can be exposed and

coated to serve as micro-mirrors.This diagram is taken from [19].

A bubble of suitable size is selected and the glass is ground down on a pol-

ishing wheel to expose part of the selected bubble, as shown under a 5X

microscope objective in Fig.(3.4). This is a time-consuming process as it

requires using an optical microscope to find a bubble on each glass substrate

which is both of a suitable size and also does not have any bubbles further

beneath, as the presence of such bubbles would cause scattering of light as

it passes through the glass.

The radius of curvature of the micro-mirror is given by the radius of the

bubble used to make it. Hence, the radius of curvature is obtained during

this polishing process as follows. When viewed under the microscope, the

bubble appears as a circle as seen in Fig.(3.4). As the bubble is polished

further down, the size of this circle increases to a maximum, corresponding

to the exactly half the bubble being polished away, and then decreases as the

polishing proceeds beyond the halfway point. The diameter of the circle is
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Figure 3.4: A Typical Exposed Bubble seen under 5X. This is a typical

bubble after exposure through grinding seen under 5X microscope objective. As

expected, the bubble shows a circular cross-section. The diameter of the circular

hole shown above is 260µm.

measured at intervals between polishing. The radius of curvature is obtained

by taking half of the maximum diameter measured. This method is accurate

to a good degree because the cross-sectional diameter of a sphere varies very

slowly near the middle of the sphere. This will be discussed more in the next

section.

The top surface, with the open bubble, is finished on the polishing wheel with

a diamond disc with nickel-plated diamonds in a raised dot matrix pattern of

30µm grit size. The bottom surface is polished using a polishing cloth with

0.05µm colloidal silica suspension on it, giving an optical-quality finish. Cui

et. al. [19] reported that they achieved nanometer roughness on the bubbles’

interior using this method. Also, they report a high degree of sphericity- at

the bottom of a dimple, in a circle of 15µm diameter, the deviation from

perfect sphericity was found to be less than 10nm as measured with a Wyko

interferometer [19].
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After this process, we found considerable contamination inside the open bub-

ble. After considerable trial and error, it was discovered that cleaning the

substrate ultra-sonically in Acetone, followed by distilled water, each time for

5 minutes at 25 kHz, appeared to remove the contaminants, without causing

any observable damage to the dimple. The bubbles’ interior viewed under a

10X microscope objective looked fairly smooth, as shown in Fig.(3.5). How-

ever, we noticed some possible pits at the base of the dimple.

Figure 3.5: Interior of a bubble before coating under 10X. This is an

example of what the base of a bubble seen through a 10X microscope objective

looks like. Note that some blemishes are discernible if one looks closely.

Twelve substrates were created in this fashion and sent to a commercial

company for optical coating (Opto-Precision Pte Ltd, Singapore). The in-

struction to the company was to coat the top side of the glass substrate (with

the exposed bubble) with a high-reflectivity coating possessing reflection co-

efficients 99.25−99.50% and transmission coefficients 0.25−0.5% at 780nm.

Flat pieces of borosilicate glass with the same coatings were also purchased

from the company to serve as the flat mirror in our half-symmetric cavity.
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Unfortunately, the company did not follow our instructions and the trans-

mission of the coating which they provided turned out to be extremely low,

at about 0.01%. This later posed a problem for us in terms of characterizing

the transmission of our cavity. The lower side of the glass substrate was

coated with an anti-reflective coating of less than 0.5% reflection coefficient

at 780nm.

Upon receiving the coated micro-mirror dimples, we set them up in an imag-

ing system (more on this imaging system in the next chapter) involving a

50X microscope objective in order to confirm the radius of curvature of the

substrates. However, upon looking at the interior of the bubbles using this

50X microscope objective, we discovered the presence of sizeable pits, as

shown in Fig.(3.6). This problem took us somewhat by surprise. We did not

expect such significant pits due to the high degree of smoothness reported

in Cui et. al [19]. These pits are likely to result in scattering losses when

we pass light through it. We believe that these pits are probably due to the

heating or cooling process. We are still uncertain as to the definite cause of

them. Nonetheless, to proceed with the project, we selected the cavity with

the smoothest interior (the one in Fig.(3.6)) as seen in the 50X objective and

built the cavity using it.
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Figure 3.6: Interior of a bubble after coating under 50X. This is how the

interior of the bubble in the previous figure looked after coating, viewed through

a 50X microscope objective. A few pits and blemishes have been circled in red.

3.3 Setup of the Cavity

The cavity was set up as shown in Fig.(3.7). The cavity consists of a plane

mirror and the curved micro-mirror of Rc = 175µm. The plane mirror is

epoxy-ed onto a piezo-electric transducer (PZT), which is itself glued onto a

macor holder. The glass substrate containing the micro-mirror is epoxy-ed

onto an aluminium plate, which is then screwed onto the macor holder to

form the complete cavity.

The cavity length was chosen so that the cavity would be mode-matched

with our input laser. During operation, a laser of the appropriate beam

waist is passed into the cavity. The PZT is connected to a PZT scanner and

the potential difference between the two sides of the PZT is varied, causing

the length of the PZT to change by small amounts. The transmitted and

reflected beams from the cavity are then picked up by a detector connected
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to a digital storage oscilloscope, in order to determine the reflection and

transmission coefficients of the cavity. As the cavity length changes by small

amounts due to the PZT scanner, the cavity resonates in different modes,

which will show up as peaks/troughs in the signal of the transmitted/reflected

beam signals.

Figure 3.7: Schematic of Cavity. The plane mirror is glued on a piezo-electric

transducer, which is in turn glued to a macor holder. The length of the cavity,

which we found to be 135µm is given by the sum of the distance between substrates

and the depth of the micro-mirror bubble.

The cavity length is given by the sum of the separation between mirrors

and the depth of the micro-mirror/dimple. To decide upon the length of the

cavity, we made use of Eqs. (2.22) and (2.24).

Making use of Eq. (2.24), we decided that of the lenses easily available on the

market, the 11.00mm aspheric lens is the most suitable, as this gives a beam

waist that is small enough to allow for wave-front matching between beam

and the curved micro-mirror, but not so small that the cavity length would

have to be impracticably small. A smaller cavity length would mean higher
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percentage uncertainty given the same machining apparatus for making the

cavity. A very small beam waist would also mean a very large divergence in

the beam, which would increase diffraction losses. Making use of this lens,

our beam waist was calculated to be 2.75µm (see section 4.1). To find the

right length of the cavity, we then let R(z) = Rc in Eq.(2.22), where Rc is the

curvature of our micro-mirror, and solve for z to find a value of 170µm. This

gives us the ideal length of the cavity for resonance of TEM0,0 modes. The

machining tolerance of our CNC (computer numerical controlled) machine

used for making holders is on the order of a few tens of microns, based on

the experiences of those who used the machine previously. The depth of

our micro-mirror was calculated as 70µm using simple geometry (this will be

shown in section 4.3). This means that we should aim to machine the holders

such that the separation between the mirror substrates is 100µm. However,

given the limited accuracy of the machine, we programmed to machine to

create holders which would give a separation of 70µm instead. This is because

a cavity length exceeding Rc = 175µm creates an unstable cavity which does

not support any modes at all. We would still be able to see resonance of axial

modes even if the cavity length were less than the ideal length of 170µm.
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Chapter 4

Measurements

This chapter covers the measurements which were done in the process of

building the cavity and the measurements which were done to characterize

it. We used a TEM0,0 laser at 780nm for these measurements. Firstly, we

describe our measurement of the laser’s beam waist, w0 and the Rayleigh

length. As mentioned previously, these were used in deciding upon the cavity

length. Following this, we describe a method for accurately determining the

radius of curvature of our micro-mirror. we then describe our measurement

of the cavity length. Lastly, we present results regarding the transmission

and reflection properties of the cavity, and finally the measurement of the

finesse of the cavity.

36



4.1 Determination of Beam Waist and Rayleigh

length for mode-matching

As mentioned earlier, we couple light into the cavity using an 11.0mm as-

pheric lens. In order to have good accuracy in our subsequent measurements,

we must determine the beam waist precisely. As mentioned in the previous

section, this beam waist was used to decide on the length of the cavity so

that the beam is mode-matched to the cavity. Beam waists of a few microns

cannot be measured using standard beam profilers. Hence, we needed to set

up an imaging system to perform this measurement. We measured the beam

waist w0 using a 50X microscope objective connected to a high resolution

camera (Lumenera Infinity Series 3).

Before describing the measurement of the beam waist, I shall first describe

the procedure which was done to calculate the resolution of the imaging

system. We used a white light source to illuminate the edge of a cycle on a

resolution target card as shown in Fig.(4.1).

Figure 4.1: Resolution Target Cards.
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The pixel data of the resulting image seen through the 50X microscope ob-

jective was saved using the camera. The pixel data of an image is the matrix

obtained when each pixel in the image is replaced with a number representing

the intensity of that pixel. The point spread function(PSF) of the system

is a Gaussian function while the function representing the shape of the edge

is a step function. The system’s resolution may be defined as the standard

deviation of its PSF. The net image formed by the contributions from both

the step and Gaussian functions is their convolution, given by half multiplied

by a complementary error function (erfc). The erfc is defined as

erfc (x) = 1− 2√
π

∫ x

0

e−t
2

dt (4.1)

The standard deviation of the Gaussian function used to compute this erfc

in Eq. (4.1), is the standard deviation of the PSF. Hence, we may find the

resolution by finding the standard deviation of the Gaussian function in the

erfc.

The curve given by Eq. (4.2), which is simply half of an erfc, was fitted to

the pixel data using a least-squares-fit.

x1 ·
1

2
(1− erf

(
x− x2√

2x3

)
) (4.2)

where x1 is the amplitude of the Gaussian used to compute the complemen-

tary error function, x2 is the position offset of the Gaussian’s mean value

from zero, and x3 is its standard deviation and x is the position coordinate

on our Cartesian axes used for curve-fitting. The result of the fit is shown in

Fig.(4.2).
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Figure 4.2: Curve Fit to Pixel Data to Determine Resolution. The blue

line represents the pixel values at the edge of a cycle, while the green line is our

curve fit. The standard deviation of the Gaussian is half of the resolution.

The resolution of the camera is given by twice the standard deviation1of the

Gaussian obtained from the curve fit done in Matlab. This procedure yielded

standard deviation of 0.383µm and thus a resolution value of 0.764 ' 0.8µm

for the resolution of our imaging system. The resolution of our imaging

system is thus fairly high and will be sufficient for our purpose of imaging

beam waists on the order of a few microns.

It is worth noting that the resolution in our imaging system was calculated

using a white light source, whereas the laser wavelength we used for subse-

quent measurements was 780nm. However, even if the resolution at 780nm

is twice as large as that which we measured for visible light, the resulting un-

1It was found using Mathematica that two identical Gaussian functions plotted on the

same axes will superpose to form a curve with only a single hump once their respective

peaks are separated by 2 standard deviations and below.
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certainties in our subsequent measurements can be shown to increase within

acceptable limits. This will be done later as the measurements are reported.

The calibration of the camera was also done using these target cards. The

result of the calibration was that each pixel represented 0.15±0.03µm, where

the uncertainty arose from the uncertainty in the length of each line pair on

the target card, which was given as ±1µm.

To image the beam waist of the laser, the imaging system was placed on a

translation stage, and moved until the smallest spot size was seen on-screen.

This spot size corresponds to the waist of the beam. The image was captured

and the pixel data loaded into Matlab once again. The expected intensity

profile of the TEM0,0 beam is proportional to the modulus square of the

electric field given in Eq. (2.20), with the hermite polynomial terms both set

to 1, reflecting that we are using a TEM0,0 beam, and with the substitution

z = 0, reflecting the situation that we are looking at the cross-section of the

beam at its waist. The intensity profile is thus given by

I = constant · e
− 2r2

w2
0 (4.3)

It is not important for our purposes to specify the constant terms in the

above equation. Hence, the following curve was fitted to the pixel data using

a sum-of-least-squares fit.

x1 · e
(x−x2)2

(x3)2 + x4 (4.4)

where x1 is the amplitude of the intensity profile, x2 is the offset of the peak
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of the profile from the origin, x3 is the waist of the beam, x4 accounts for any

background offsets to the intensity profile such as stray light sources, and x

is the position coordinate on our Cartesian axes used for curve-fitting.

The curve fit is shown in Fig.(4.3). The width of our fitted curve, represented

by x3, is 2.85µm.

Figure 4.3: Curve Fit to Pixel Data to Determine Beam Waist. The blue

line represents the pixel values of the spot, while the green line is the curve fit.

The standard deviation tells us our beam waist.

Taking the resolution of the camera into account, the beam waist is then

given by

w0 = 2 ·
√

(
width measured

2
)2 − (0.383)2 = 2.75µm (4.5)

The Rayleigh length, zR, is related to the beam waist via the following for-

mula
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zR =
πw2

0

λ
= 30.5µm (4.6)

where we use 780nm light.

There are two sources of error in this measurement. The uncertainty in this

measurement of w0 due to the resolution of the camera is given by the differ-

ence between the waist measurements with and without taking the resolution

into account. This works out to 0.1µm. The second source is the calibration

of the camera, which contributes an uncertainty of 0.7µm for this measure-

ment. Taking these uncertainties together, our beam waist measurement is

2.8 ± 0.8µm. As mentioned earlier, even if the resolution is twice as bad at

780nm, the difference to w0 is not severe. If the resolution doubles, the beam

waist changes by 0.3µm, which we take to be the uncertainty contribued by

resolution. Together with the uncertainty from the calibration process, this

gives a total uncertainty of 1µm for our beam waist measurement. This rep-

resents only a 4.8% increase in uncertainty, which means that the uncertainty

of the measurement is still acceptable.

The error in zR is given by the error propagation formula

δzR
zR

= 2
w0

w0

which results in uncertainty of 20µm. Hence, zR = 30 ± 20µm. Using the

above formula, it can be shown once again that if the resolution is twice as

bad, the uncertainty of zR does not increase very much (it increases by 4µm),

though admittedly the uncertainty is rather high for the Rayleigh length of

our beam.
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4.2 Method for Measuring Radius of Curva-

ture

Before putting the mirrors together in a cavity setup, the radii of curvature

(denoted henceforth as Rc) of the the mirrors must be accurately known

in order to make the relevant calculations. The Rc of the curved micro-

mirrors were first measured under a microscope 5X objective before they

were sent for coating. The Rc were measured by looking at the bubbles

through the 5X microscope as they were being polished down. The Rc is

taken to be half of the largest diameter seen during the polishing process.

The uncertainty of length measurements in the microscope is estimated to be

about 10µm, corresponding to the uncertainty of length measurements made

on the microscope. This method assumes that the bubble is measured when

the it has been ground to its midpoint or near it. In practice, the bubble was

not measured in real-time as it was ground down. Instead it was repeatedly

ground down by small amounts and measured under the microscope after

each grinding interval. The height of glass ground away at each interval

was slowly reduced as the bubble was exposed, starting from about 50µm at

each interval when the bubble was first exposed under the microscope, and

then going down to as slow as 30µm per interval as the bubble was further

exposed. However, this method should still give a good measurement of the

radius of curvature due to the following reason.

Referring to Fig. (4.4), it is clear that
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Figure 4.4: Diagrammatic Representation of Bubble being Polished. The

z coordinate gives the depth of the bubble, with z = 0 defined as the line running

through the center of the sphere. Rc is the radius of curvature and r is half of the

length seen and measured on the microscope.

r =
√
R2
c − z2 (4.7)

with r = Rc occuring at z = 0 as expected. It is easy to show that the rate

of change of r becomes extremely slow near z = 0.

dr

dz
= − z√

R2
c − z2

≈ − z

Rc

for small z

Rc is typically 150 − 200µm for our substrates. For small values of z, say

30µm, corresponding to the case where we have polished till very near the

halfway point of the bubble, dr
dz

is on the order of 0.01, which means that

the value of r should be very near to that of Rc at this point. Hence, if we

take the value of r as our Rc value when we are slightly off from the halfway
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point, the resulting discrepancy between the two values is acceptably low. We

assumed perfect sphericity of the bubble in this analysis. This assumption

should be reasonable due to the high degree of sphericity measured by Cui

et. al [19]. Also, we conducted a second measurement to confirm the value of

Rc which also supports that the bubble is spherical to within a small margin

of error. This measurement will be described shortly.

For the substrate which was used to make the actual cavity, Rc was measured

at 175µm under the microscope. We may verify the above analysis for our

case by noting that if we were 30µm away from the actual halfway point of

the spherical bubble when the measurement was made, the actual true Rc is

given by 177µm, which we find using a simple rearrangement of Eq. (4.7).

After the glass substrates were coated, we conducted another measurement

of Rc to verify the accuracy of the Rc values measured using the microscope.

This measurement also allows us to verify the sphericity of the bubble. The

procedure is represented diagrammatically in Fig.(4.5) and is described as

follows.

The radius of curvature, R(z), of a TEM0,0 Gaussian beam varies according

to Eq. (2.22), which is re-written here for easy reference.

R(z) = z(1 + (
zR
z

)2) (4.8)

where R(z) is the curvature of the beam at the point z along the axis of

propagation, z = 0 is defined as the position of the beam’s waist, and zR
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Figure 4.5: Setup for determining Rc. The position of the micro-mirror is

varied by means of a translation stage. As the substrate is moved along the

direction of laser propagation, the surface of the curved micro-mirror matches the

laser wave front at two positions, causing a collimated beam to be detected. The

difference between these two positions, D, can be used to find Rc via Eq.(4.10)

refers to the Rayleigh length of the beam. The radius of curvature of the

beam, R(z) will be equal to the Rc of the micro-mirror at two points. (This

is obvious from the fact that there are two solutions for z when we solve the

quadratic equation R(z) = Rc.) The difference between the 2 z solutions,

denoted by D, is simply the difference between the 2 roots of the quadratic

equation, given by

D =
√
R2
c − 4z2

R (4.9)

We find D by starting with the micro-mirror near the lens, and then slowly

increasing its distance from the lens. When we first observe a collimated

beam being reflected to the detector, we record the reading on the translation
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stage’s micrometer. Note that this reflection occurs because the interior of

the bubble has been coated. We then continue moving the substrate away

from the lens till we detect a collimated beam at the detector once again

and record the translation stage micrometer reading. The difference between

these two readings is equal to D. The Rc can then be found by solving for

Rc in the previous equation. Hence,

Rc =
√
D2 + 4z2

R (4.10)

where we already know the Rayleigh length zR from our earlier measurement.

The uncertainty of this measurement is derived as follows.

Starting from Eq. (4.10), and making use of typical error propagation for-

mulae, we get

δRc

Rc

=
1

2

δ (D2 + 4z2
R)

D2 + 4z2
R

(4.11)

=
1

2

√
(δD2)2 + (4δz2

R)
2

D2 + 4z2
R

with

δD2

D2
= 2

δD

D
(4.12)

δz2
R

z2
R

= 2
δzR
zR

δzR
zR

= 2
δw0

w0
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where the last equation is due to the fact that zR is related to the beam waist

w0 via Eq. (2.23). Given these equations, once we know the uncertainties of

D and w0, we can compute the percentage uncertainty using Eq. (4.12). δD

is simply the uncertainty of length measurements made on the micrometer

screw gauge of the translation stage, which is 10µm. δw0 was found to be

0.8µm in the previous section. Making use of these values and the equations

above, we arrive at a percentage uncertainty of 8% for the Rc measurements

done using this method.

Once again, if the resolution is twice as large as what we measured, the per-

centage uncertainty is found to increase only to 10%, which is still acceptable.

The above procedure was not carried out using the actual substrate due to a

concern that this may damage the coating, but was carried out using another

substrate with a curvature measured at 185µm using the optical microscope.

The resulting reading obtained was 187µm. Hence, the readings done on

the microscope and using the method just described are consistent within

their error margins. The fact that these two measurements agree with each

other supports the conclusion that the bubbles indeed have a high degree

of sphericity. (One may have suspected that the cross-section of the bubble

looks circular, but the base of the bubble is not indeed spherical. This

measurement shows that this is not so.)

In conclusion for this section, we are confident that the Rc measurement of

our chosen substrate of Rc = 175µm is accurate to within 10% or 17.5µm.
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4.3 Measurement of Cavity Length

The total length of the cavity, Lcav, is given by the sum of the separation

distance between the mirrors, S and the depth of the micro-mirror, Dh, as

shown in Fig. (4.6).

Figure 4.6: Sidelong View of Cavity The length of the cavity is clearly given

by the sum of mirror separation S and micro-mirror/dimple depth Dh.

The depth of the micro-mirror is easily worked out using the formula

Dh = Rc −
√
R2
c − r2 (4.13)

2r is the diameter of the circle seen under the microscope when the bubble

was ground to its final depth. This was measured on the the same optical

microscope used previously and was found to be 280± 10µm. This gives Dh

a value of 70µm.

49



The measurement of the separation yielded S = 65± 10µm.

Hence, we obtain

Lcav = Dh + S = 135µm (4.14)

The uncertainty of this measurement is given by

δLcav =
√

(δDh)2 + (δS)2 (4.15)

The uncertainty δDh is obtained as follows.

δD =

√
(δRc)2 +

(
δ
√
R2
c − r2

)2

δ
(√

R2
c − r2

)
√
R2
c − r2

=
1

2

δ (R2
c − r2)

R2
c − r2

δR2
c

R2
c

= 2
δRc

Rc

δr2

r2
= 2

δr

r

We need only substitute into the above equations the values of δRc = 10µm,

δr = 5µm corresponding to uncertainty for measurements done on the mi-

croscope, to obtain δDh = 18µm. We substitute δDh and δS into Eq. (4.15)

to obtain δLcav = 20µm.
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4.4 Transmission and Reflection Properties

of Cavity

We measured the reflection of the cavity on-resonance by using the following

method, displayed in Fig.(4.7).

Figure 4.7: Setup for measuring reflection of cavity on resonance. The

three-way holder contains two 11.00mm aspheric lenses (ovals) and one uncoated

window (rectangle). The holder’s position is varied on a translation stage such

that the beam curvature matches that of the curved micro-mirror. This causes a

collimated beam to be reflected from the cavity back into the detector. Since the

PZT is sweeping, we will also observe troughs in our reflection signal.

Light from the fiber is collimated by an 11.00mm aspheric lens, reflected

by an uncoated window and re-focused onto the cavity. The position of

the lenses is varied until the curvature of the beam matches that of the
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micro-mirror. (The alignment is facilitated by placing a television camera

behind the cavity.) When the wave front coincides with the surface of the

micro-mirror, a collimated beam is reflected back into the detector. Hence,

we know that the beam is aligned with the cavity when we see most of the

laser’s input power to the cavity being reflected into and read by our detector.

As mentioned in Chapter 2, the PZT is connected to a PZT scanner which

varies the potential difference across the PZT over a range of 1000V at a

rate of 110Hz. The PZT length changes by 400nm per 1000V applied across

it. The plane mirror is expected to oscillate over one free-spectral range of

the cavity given by 390nm, which is half the wavelength of light used. We

expected to be able to capture the privileged mode of the cavity in our scope

as we scan the PZT over its full scan range. However, we found that the

PZT did not appear to cover one full free spectral range when a sweep over

1000V was applied. We believe that this is due to how the PZT is placed

within the cavity- it is possible that the PZT is experiencing friction with

the cavity holder.

After aligning the beam with the cavity and switching on the PZT scanner,

we observed troughs in the reflected signal as shown in Fig.(4.10). Upon

trying my best to align the cavity, and also lowering the sweep range of the

PZT to isolate a single mode, the signal in Fig.(4.9) was obtained. If we

approximate that the signal in Fig.(4.9) at the horizontal segments represent

100% reflection of light from the cavity, then the reflection coefficient at

resonance can be found by taking dividing the magnitude of the signal at

the lowest point by that at the straight line region. This procedure yields

a reflection coefficient of 92.2%. Clearly, the drop in the signal is far from
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the complete disappearance of the reflected signal which is expected during

resonance of an ideal cavity. This is due to the high absorption coefficient

of the coatings supplied to us and also presumably due to the pits in the

curved micro-mirror and/or differences in the coatings of the two mirrors

due to uneven deposition of the coating on the curved surface of the micro-

mirror. Due to the extremely low transmission on the coatings supplied to

us, it is not possible for us to accurately quantify the scattering losses. This

is explained in detail as follows.

Figure 4.8: Reflected signal before fine-tuning alignment. The cavity un-

dergoes resonance at many different modes as the PZT sweeps over 1000V. The

scope is set to display alternating current signals.

The company provided us with their measurements of the transmission co-

efficients for their coatings. This was given as 0.02% or 2.0 ∗ 10−4 at 780nm.

(Note that this measurement was made using a plane mirror and not our
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Figure 4.9: Reflected signal after fine-tuning alignment. The cavity under-

goes resonance at only a single mode. The scope is set to display direct current

signals. It is obvious that the reflected signal decreases by only a small fraction of

the total signal upon resonance.

custom-made curved micro-mirror.) This was far off from the specifications

which we had requested from them. We had requested reflection coeffi-

cients of 99.25 − 99.50% or 0.9925 − 0.9950 with transmission coefficients

of 0.25− 0.5% at 780nm. In other words, they provided us with percentage

transmission that was an order of magnitude lower than what we wanted.

We cannot be sure what the reflection coefficients on the individual mirrors

were. The company was able to provide us only with transmission data.

We did not measure the refection coefficients ourselves for the following rea-

son. A measurement of reflection coefficient could presumably be made by

bouncing light off the mirror, measuring the reflected power and comparing

this with the incident power of the light. However, we would not be able to

differentiate with reasonable confidence the difference between say 99.25%

and 99.5% of the incident power being reflected back into our detector. We
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proceed instead by assuming reasonable values for the reflection coefficients

in order to make sense of the data in Fig. (4.9).

If we assume that they provided us with the requested reflection coefficients

on both coatings, then by Eq. (2.1), we obtain loss coefficients of 0.48−0.73%

for the coatings. This is in the scenario where there are no further losses,

unlike the case for the micro-mirror surface, where further losses are expected

due to scattering from the pits on it. The reflection coefficient of the cavity

is given by Eq. (2.8). Making use of this equation and the quantities just

mentioned, we obtain an expected reflection coefficient of 91.7 − 94.0% on

resonance. Our approximate measurement of the reflection coefficient of the

cavity being about 92.2% during resonance falls within this range. Hence, it

is not possible to say conclusively what the effect of the scattering losses or

mismatch of the mirror coatings might have been.

We tried also to measure the power transmitted through the cavity by placing

another 11.00mm aspheric lens and a detector after the cavity in Fig.(4.7).

We were able to see the transmitted beam on a screen using a small televi-

sion camera, but were unable to measure any signal on the detector, even

while working with the lights switched off. The reason for this is that given

the reflectivity and absorption coefficients of the mirrors supplied to us, the

expected transmission is already forbiddingly small even before considering

further losses through scattering and cavity mismatch. Hence, in the pres-

ence of such effects, the transmission becomes even smaller and beyond the

ability of our detectors to measure accurately. This is explained in more

detail as follows.
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The transmission of the cavity is given by Eq. (2.7). Subsitituting the same

values for reflectivities and absorptivities as before, we obtain an expected

transmission of 0.07−0.1%. Again, this is without considering possible scat-

tering losses from the pits or mismatch of coatings. Since we are shining

in power of about 100µW , we can only hope to detect transmitted power

of about 100nW , a forbiddingly small amount. Hence, the presence of any

further loss mechanisms is likely to push down the transmitted power to an

amount which is beyond our ability to measure. This is what we believe

happened in our case- further losses such as the mismatch of the reflection

coefficients and/or scattering losses from the pits are present. The transmit-

ted power must have been smaller than the ambient background lighting in

the lab even with the lights switched off, resulting in our inability to read any

change in the detector signal caused by the transmitted light. Since our cam-

era was able to ’see’ the transmitted light, we could have calibrated a camera

to measure the transmitted power. However, given the very low power being

transmitted, any inferences made from such a measurement would remain

inconclusive, as any small random errors, such as fluctuations in background

lights, would have a magnitude comparable to that of the measurement itself.

To conclude this discussion on the transmission of the cavity, the transmission

through the cavity is negligibly small, below 0.1%, even on resonance. This

is due to the quality of the coatings supplied to us, and also due to the

likely presence of significant scattering losses and possibly cavity mismatch

as well. We cannot quantify these losses because we are unable to measure

the transmitted light. We did not venture toward using higher incident beam

powers because this was likely to damage the coatings- if the coatings were
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damaged, the reflectivities would change and we would not have a clear

picture of what was happening.

4.5 Observation of Cavity Modes

We were able to observe some reasonably well-defined modes within the cavity

itself by imaging the surface of the flat mirror within the cavity using the

imaging system described previously- a 50X microscope objective connected

to a high resolution camera. During this procedure, the sweep of the PZT

scanner was set to zero so that the potential difference across the PZT was

no longer oscillating. The potential difference was then varied manually by

changing the offset on the scanner. We were able to observe the modes of

the cavity as shown below.

Figure 4.10: Modes were observed as the PZT voltage was manu-

ally scanned. From left to right, the above modes were seen as the volt-

age was at 170, 458, 612, 800 and 968 V respectively. These correspond to

TEM4,1,TEM1,1,TEM4,0,TEM0,0 and TEM3,0 modes.
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4.6 Finesse Measurement of Cavity

We measured the finesse of the cavity by the following method. The cav-

ity was set up as in Fig. (4.7). An electro-optic modulator was used to

place troughs (sidebands) at a known distance in frequency space on either

side of the single trough seen in Fig.(4.9), thus generating the signal seen

in Fig.(4.11). The distance between the central trough and either sideband

corresponds to a frequency difference of 4.6GHz. This gives us a frequency

scale which may be used to determine the linewidth and hence the finesse of

the cavity. A curve-fit was done in Matlab with the signal seen in Fig.(4.11).

The data was fitted to the sum of three Lorentzians. The data is well de-

scribed by the three Lorentzians as shown in Fig.(4.12). The curve-fitting

procedure yields a value for the linewidth of the central Lorentzian, which

can be translated into the linewidth of the cavity using the scale established

by the sidebands- the distance between the central trough and each sideband

corresponds to 4.6GHz, so we can easily find the frequency corresponding

to the width of the central Lorentzian. This procedure gives us a value of

1.44GHz for the cavity linewidth. Making use of Lcav = 135µm and Eq.

(2.15), we obtain a finesse of 766.

The uncertainty in this reading is due dominantly to the uncertainty in the

cavity length Lcav. Hence, the percentage uncertainty in this finesse reading

may be considered equal to that of the Lcav measurement. The uncertainty

of the finesse is thus given by
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Figure 4.11: Reflected signal with EOM. The central trough is the dip in

reflected power due to resonance. The two sidebands are each 4.6GHz from the

central trough.

Figure 4.12: Curve fit of reflected signal to three Lorentzians. The green

line is the curve fit while the blue line is the actual data. The fit looks reasonably

good.

δF =
δLcav
Lcav

F = 100 (4.16)
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Hence, the finesse may be taken to be F = 800± 100.
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Chapter 5

Discussion and Conclusion

We have done the work of developing and characterizing a micro-cavity. This

work has served as a trial run of sorts for the fabrication method described

in [19] in which we have obtained various pieces of information which will

be useful in the making of micro-cavities which will actually be used for ap-

plications such as atom chips or entanglement distribution. This includes

discovering the issue of pits being present inside the micro-mirror. Unfortu-

nately, we were unable to quantify the effects of these pits due to the quality

of the coatings supplied to us. Our measurements in Section 4.2 suggest

that the bubbles indeed possess a high level of sphericity, which makes this

method seem promising. We measured the finesse of the cavity as 800.

Now that we have tried making the first microcavity, the next step would be

to address the issues which we discovered. These include the problem of pits

inside the micro-mirror. One solution to this may be to use an etching to

smoothen the interior of the micro-mirror bubble. It might be possible that
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Cui et al did not encounter any problem with the pits since they used a very

tightly focused laser beam with waist of about 1.0µm. The next step after

devising solutions to these issues would be to obtain high quality coatings

with high-reflectivity and essentially zero absorption. If these coatings are

successfully deposited on the mirror surfaces of the half-symmetric cavity,

the requirements for strong coupling will certainly be reachable using such a

cavity.
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